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Abstract

The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or

fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simula-

tions. The use of j�, instead of jm tends to artificially inflate the value of Rayleigh number by about 30%. A new

transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection

in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for

CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the

case of FST, the critical transient Rac was found to be 30.9, which is close to the theoretical value of 32.3. The critical

times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the

emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal

instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical

wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average

maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lord Rayleigh [1] first provided the famous insta-

bility criterion based on an adverse linear temperature

gradient in a fluid layer. However in nature, natural

convection is induced by a time-dependent and non-

linear temperature profile. This means that the conven-

tional steady-state linear stability analysis (LSA) is not

applicable to convection caused by unsteady-state heat

conduction. Several analyses and experiments had been

done on the onset of convection caused by transient heat

conduction in the past [34–36], none of them successfully

developed an appropriate theory. Tan [2] and Tan and

Thorpe [3–5] established a new theory of transient in-

stability in deep fluids that successfully predicted the

onset of convection under various boundary conditions.

The knowledge of natural convection in saturated

porous media is of considerable interest because of its

importance in the study of heat transfer of geothermal

reservoir, mantle convection and various engineering

applications, which include the high performance insu-

lation for building, cold storage and solar power collec-

tion. Unsteady-state heat conduction experiments in

porous media are very difficult to conduct as the mea-

surement of the temperature profile of a non-homoge-

neous system cannot be done with certainty, let alone

accuracy. Moreover, the heat conduction is not uni-

directional and perpendicular to the interface. The com-

putational fluid dynamics (CFD) simulations of onset of

convection induced by unsteady-state heat conduction

by Tan [1], Tan and Thorpe [4–6] and Sam [7] have

successfully provided the mechanisms of onset and de-

tailed temperature profiles and flow fields. In particular,
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Sam�s CFD simulations have shown that the onset of

convection in porous media was basically similar to that

in Newtonian liquids, although the detailed features may

differ. Therefore it is useful to employ a CFD package to

simulate the onset of convection in the porous media, the

results were used to verify the theoretical value of critical

transient Rayleigh number proposed in Section 3.

2. Literature review

This review will cover the LSA for porous media and

for Hele–Shaw cell under steady-state heat conduction,

followed by a review of the experiments for both steady-

state and unsteady-state conditions. There are no known

theoretical studies of the onset of convection in porous

media caused by unsteady-state heat conduction.

2.1. Linear stability analysis for occurrence of convection

in porous media

Horton and Roger [8] and Lapwood [9] were the

early researchers who provided LSA to examine the

breakdown of stability of a layer of fluid subject to an

adverse temperature gradient in a porous media. Lap-

wood [9] pointed out that the problem was similar to the

convection in a layer of viscous fluid, with the inclusion

of Darcy�s law.
The linear stability theory assumes an ideal linear

temperature gradient in porous media, but the occur-

rence of convection under ideal steady-state condition

could only be artificially achieved by gradually in-

creasing the heating rate in a thin layer of porous me-

dium over a long period of time. Usually an electrical

heater was used to heat the surface. Under such con-

dition it is highly doubtful that the fixed surface tem-

perature (FST) boundary condition for bottom-heating,

as claimed by most of the researches, would still be

valid. Tan and Thorpe [3] had instead shown that these

bottom-heating experiments are generally characterized

by a constant heat flux (CHF) boundary condition, as

the fluid on top of the conducting plate-heater will

generate a Biot number close to zero. The latter was

first used by Pearson [10] to conduct a LSA for Ma-

rangoni convection so as to correct Lord Rayleigh�s
(1916) misconception of Benard�s [11] experiments that

were thought to be driven by buoyancy. We have esti-

Nomenclature

~aac dimensionless wave number

a wave number [m�1]

b gap between twowalls of aHele–Shaw cell [m]

cp specific heat [J/kgK]

d diameter of beads [m]

g acceleration due to gravity [m2/s]

H total depth of porous medium [m]

h heat transfer coefficient [W/m2 �C]
hs heat transfer coefficient at surface from

simulations [W/m2 �C]
Ke permeability [m2]

k thermal conductivity of fluid [W/m �C]
km thermal conductivity of porous media mix-

ture, km ¼ /kf þ ð1� /Þks [W/m �C]
tc critical time for onset of convection [s]

T temperature [�C]
Ts surface temperature at time t [�C]
DTc critical temperature difference between top

and bottom surface [�C]
DTs temperature difference of the surface of the

porous media [�C]
w width of the porous medium [m]

z penetration depth [m]

Greek symbols

a volumetric coefficient of thermal expansion

[K�1]

j thermal diffusivity [m2/s]

j� modified thermal diffusivity, j� ¼ km=ðqcpÞf
[m2/s]

jm thermal diffusivity of porous mixture, jm ¼
km=f/ðqcpÞ þ ð1� /ÞðqcpÞsg [m2/s]

k wavelength [m]

m kinematic viscosity [m2/s]

l viscosity [Pa s]

q density [kg/m3]

/ porosity

Abbreviation

CFD computational fluid dynamics

CHF constant heat flux

FST fixed surface temperature boundary condi-

tion

LSA linear stability analysis

Nu Nusselt number

Subscripts

c critical

0 initial condition

max maximum

f fluid

s solid

m porous media mixture
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mated that the Biot number in most of the bottom-

heating experiments using a plate heater could only be

characterized by a CHF boundary condition as the

fluid is rather insulating relative to the metal heater and

typically a system of glass-water matrix heated by a

copper heater will yield a Biot number of approxi-

mately 0.09.

Ribando and Torrance [12] were the first researchers

to extend Lapwood�s analysis to the case of bottom-

heating with a CHF boundary condition and provided

the theoretical values of critical Ra and ~aac as shown in

Table 1. The CHF boundary condition may also exist

for the upper boundary as in the case of top-cooling of

a layer of porous media, although the theoretical values

still have not been determined. They may be roughly

estimated by comparing the results of Ribando and

Torrance [12] with those for continuous fluids of

Sparrow et al. [13] under the same boundary condi-

tions.

Elder [14] re-arranged the thermal instability crite-

rion of Horton and Roger [8] and Lapwood [9] in the

form of Rayleigh number for porous media as Ra ¼
KegaDTH=ðj�mÞ, and for Hele–Shaw cell as Ra ¼ gaDT=
ð12bkfmÞ, both of which have theoretical value of

Rac ¼ p2 and a critical wavenumber ~aac of p for rigid

surfaces with the FST boundary condition. However,

Elder did not mention the reason for employing the

modified thermal diffusivity, j� ¼ km=ðqcpÞf , in calcu-

lating the Rayleigh number, and clearly, he has mistaken

the thermal boundary to be of the FST and the corre-

sponding value of the critical Rayleigh number to be 4p2

and hence j� would give a higher value of Rayleigh

number, whereas the correct definition of thermal dif-

fusivity of the saturated porous media should be

jm ¼ km=½/ðcpÞf þ ð1� /ÞðqcpÞs
. Neglecting the con-

tribution of the solid, the calculation of j� can easily

inflate its value by about 30% or more depending on the

porosity and properties of the matrix. In fact, most of

the researchers were not aware of the influence of Biot

number on the value of the critical Ra, as we shall show
later in this section.

2.2. Steady-state convection experiments

The recent study of Shattuck et al. [15] still referred

to their bottom-heating experiments to the FST

boundary condition and used the critical theoretical

value of Rayleigh number of 4p2 to design and evaluate

their experiments. They erroneously used Rac ¼ 4p2 to

calculate a value of permeability that is 2.5 times that of

their experimental value calculated from Ergun�s rela-

tion [16]. This can be easily corrected with a theoretical

Rayleigh number of about 27.1 for a CHF boundary

condition and an actual jm with a porosity of 0.26 for

his ordered media. The Biot number of the bottom-

heating interface may be easily determined to be about

0.05 as the highly conducting ceramic heater (AIN) has a

high conductivity of 133 W/mK. Their measured critical

wavenumber of 0:7p is quite close to the theoretical

value of 0:56p. However, the bulk fluid of the porous

media exerts a substantial shear so that a free surface is

not attainable in the presence of the solids. It is likely

that the upper physical boundary is between that of a

free and solid surface, hence the critical Ra will lie be-

tween 17.7 and 27.1, with an average of about 22.7. The

corresponding critical wavenumber will thus be about

0:65p as an average of 0:56p and 0:73p. Tan and Thorpe

[2] has also observed similar effect of laminar shear in

bulk fluid in bottom-heating experiments using Newto-

nian fluids, the upper boundary in the bulk fluid expe-

rienced substantial laminar shear so that it is not free.

In general, past experiments were mostly based on

the FST as isothermal and rigid conducting imper-

meable boundaries. Horton and Roger [8] conducted

experiments to verify the theoretical result for the bot-

tom-heating of porous media for the FST boundary

condition using different grade of sand saturated with

water. In their experiments, large temperature differ-

ences between the upper and lower boundaries were

applied to generate the convective flow and non-linear

temperature profile. As a result, the minimum temper-

ature gradient, which they obtained from the experiment

were in excess by considerable amounts of the minimum

Table 1

Criteria of thermal instability for porous media under various boundary conditions

Boundary conditions Author Wave number Critical Rayleigh number

Top surface Bottom surface

FST, solid impermeable FST, solid impermeable Lapwood [9] p 39.5

FST, free permeable FST, solid impermeable Lapwood [9] 0:67p 25.0a

FST, solid impermeable CHF, solid impermeable Ribando and Torrance [12] 0:73p 27.1

FST, free permeable CHF, solid impermeable Ribando and Torrance [12] 0:56p 17.7

CHF, solid impermeable FST, solid impermeable Estimated 0:73p 27.1

CHF, free permeable FST, solid impermeable Estimated 0:55p 14.0

aLapwood [9] has found this value for a porous medium with water on top, i.e. for a CHF impermeable boundary, and he did not

obtain results for a top free-surface per se. It should be around 25, which is close to 27.1.
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temperature gradient that was predicted by the LSA the-

ory. They claimed that this was possible because they

neglected the temperature-dependence of viscosity, and

consequently, they attempted to compare their experi-

ments with theories and correlations, which allow for non-

linear temperature profile and temperature-dependent

viscosity. However they failed to propose a comprehensive

solution. In fact, their experiments were already against

the basis of the LSA due to the existence of a non-linear

temperature profile, which may be due to the improper

heating method and the large layer of porous media.

The homogeneous Darcian flow in a steady-state

experiment is possible only when d=H � 1, which is

not easy to meet in an experiment if large particles are

favoured. Experiments of Georgiadis et al. [18] and

Shattuck et al. [15] with 3.2-mm arylic spheres could

only packed up to four layer thick, so that d=H ¼ 0:25,
which is not sufficiently small. This was the main cause

of the deviation of experiments from theory.

The definition of thermal diffusivity for calculating

the Rayleigh number in porous media had seen much

confusion and disputes. Hortan and Roger [8] and

Lapwood [9] had defined the Rayleigh number using the

thermal diffusivity of the saturated porous media.

However, Katto and Masuoka [17] suggested the use of

j� for calculating Rayleigh number just because their

experimental results for nitrogen gas agreed with the

theoretical critical Rayleigh number of 39.4.

It is clear from our foregoing deliberation that the

experiment is likely to be one of CHF and the critical Ra
may be reduced to a low value of about 27.1 based on

jm. In their experiments, high temperature of 40–80 �C
and pressure of 50–100 atm have been used to induce the

occurrence of convection in porous media. Their results

were very doubtful as these extreme conditions may al-

ready violate the basis of the LSA theory.

Elder [14] investigated the onset of convection in

both porous media and Hele–Shaw cell for bottom

heating of FST boundary condition. In porous media,

glass spheres of diameter 3, 5, 8, 18 mm and plastic balls

of (styropor) 6 mm were used. However the critical

temperature difference DTc and the thickness of the po-

rous layer and the type of fluid were not reported in his

paper to afford a detailed analysis here. He claimed

without determining the Biot number of the bottom

interface that convection occurred at the theoretical

value of Rac ¼ 4p2 which is doubtful as has been ex-

plained earlier. Kaneko et al. [19] used two different

grades of silica sand of different permeabilities as porous

media with heptane and ethanol as the saturated liquids.

They found that for the system of heptane/sand B, the

onset of convection occurred at Rayleigh number ap-

proximately Rac ¼ 4p2. However, the critical Ra for the

ethanol/sand system was only 28, which is close to the

theoretical value of 27.1 for CHF boundary. Chen and

Chen [20] conducted experiments using 3-mm diameter

glass beads contained in a box of 24� 12� 4 cm3. The

average porosity was measured to be about 0.345.

The occurrence of convection was marked by a change

in the slope of the heat flux curve. They found a critical

Rayleigh number of 40.07 with a critical DTc ¼ 15:2 �C
using j�. The inclusion of the solid and the porosity of

0.345 in jm would easily reduce the critical Rayleigh

number by about 30% to a value that is close to 27.1 for

a CHF boundary.

Overall, we may remark that most of these so-called

FST experiments with bottom-heating are CHF type

and their critical Rayleigh number can be easily reduced

by 30% with jm to about 30, which is close to the the-

oretical value of 27.1.

2.3. Transient convection experiments

There have been no systematic studies on the onset of

convection induced by transient heat conduction in deep

layer of porous media. Elder [21] was the pioneer who

conducted some numerical analyses and experiments on

the onset of convection in porous media and Hele–Shaw

cell. Owing to the difficulties in visualizing the convec-

tive flow in the porous media and the analogy between

the hydrodynamic equations between the Hele–Shaw

cell and porous media, Hele–Shaw cell was used in

his experiments to gain qualitative information on the

formation and development of the thermals, and the

experimental results of Hele–Shaw cell were then com-

pared to the numerical results of the porous media. He

observed an array of blobs or plumes rapidly growing

above the lower surface (proto-sublayer), then followed

by the gradual appearance of a large-scale cellular pat-

tern of ever changing eddies. Unfortunately, he was

unable to develop a successful model for predicting the

onset of transient convection.

Very recently, Prakash et al. [22] erroneously char-

acterized their CFD study of the onset of convection in

deep porous media with anomalously large Rayleigh

number of 1010, primarily because they wrongly defined

the Rayleigh number with the full height of the box of 2

m. Some studies are focused on the post-onset and high

Rayleigh number flows, for example Stamps et al. [23]

conducted numerical study for unsteady convection at

Rayleigh number exceeding 800.

The experiments for unsteady-state heat conduction

in deep porous media [15,18] with d=zmax ¼ 0:17 for 3

mm beads and d=zmax ¼ 0:46 for 15 mm beads, the rel-

atively short duration of transient experiments of few

minutes compared to hours long steady-state experi-

ments have very definite advantages of less fluctuations

of experimental conditions and well-defined temperature

profiles associated with the Biot number of the interface.

Shattuck et al. [15] seemed to have obtained better re-

sults in their experiments with small temperature dif-

ference of less than 10 �C.
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More interesting is the recent discovery of the rise of

the plume by a team of Dutch scientists (as reviewed by

Kerr, [24] sp.), instead of the conventional of convection

rolls confined between two plates, from near the bottom

of the mantle all the way up to Iceland�s surface. The

rising mantle plume is likely to be driven by the CHF

mode of heating because the conductivity of the rocky

mantle is only about a tenth of that of the outer core,

which is composed mostly of iron. Anderson�s [25] re-

view showed that the thermal conductivity of the outer

core (43 W/mK) is about 6.8 times that of the mantle

(6.2 W/mK).

None of these researchers mentioned above have

shown that their bottom-heating experiments had large

enough Biot number and were FST, which has been

shown by Tan and Thorpe [4] to be practically impossible;

the experiments are, on the contrary, of the CHF

boundary condition. It is conceivable that experiments

for unsteady-state heat conduction in porous media are

very difficult to conduct as the measurement of the tem-

perature profile of an inhomogeneous system cannot be

done with certainty. Moreover, the heat conduction is not

uni-directional and not perpendicular to the interface.

It seems clear that the Rayleigh number can only be

calculated accurately at a very strict condition where the

thermal diffusivity of the solid and liquid matrix are

similar and the permeability of the porous media should

be large enough so that DTs or heat flux will be small. In

this study, a transient Rayleigh number based on Tan

and Thorpe�s [3] theory was proposed for a semi-infinite

saturated porous medium heated with CHF or FST. A

CFD package was used to simulate the onset of con-

vection in the porous media in order to investigate the

correctness of the theory and its prediction of the onset

of convection.

3. Theory of onset of convection caused by transient heat

conduction in porous media

The mathematical principle advanced by Tan and

Thorpe [3–5] for predicting the onset of convection in-

duced by transient heat conduction in semi-infinite fluid

is adopted here for porous media.

The transient Rayleigh number for a porous media is

a function of penetration depth z and the local tempera-

ture gradient oT=oz, thus a time-dependent Rayleigh

number may be defined as:

Ra ¼ Kegaz2

jmm
oT
oz

� �
ð1Þ

3.1. Constant heat flux boundary condition

When the bottom surface of a porous medium satu-

rated with fluid is heated (or cooled) by a CHF, q0, the

temperature profile is predicted by Carslaw and Jaeger

[26] as:

T0 � Ts ¼
2q0

ffiffiffiffiffiffiffi
jmt

p

km
ierfc

z
2

ffiffiffiffiffiffiffi
jmt

p
� �

ð2Þ

By differentiating Eq. (2), the temperature gradient can

be found as

oT
oz

� �
t

¼ � q0

km
erfc

z
2

ffiffiffiffiffiffiffi
jmt

p
� �

ð3Þ

The transient Rayleigh number, defined in Eq. (1), be-

comes

Ra ¼ Kegaz2

jmv
q0

km
erfc

z
2

ffiffiffiffiffiffiffi
jmt

p
� �

ð4Þ

The maximum transient Rayleigh number at any instant

can be found by differentiation of Eq. (4) as follows:

o

oz
Ra

� �
t

¼ Keqatcq0z
jmvkm

2erfc
z

2
ffiffiffiffiffiffiffi
jmt

p
�

� zffiffiffiffiffiffiffiffiffiffi
pjmt

p e�
z2

4jm t

�
¼ 0

ð5Þ

which gives the position of the maximum value of

transient Ra as

zmax ¼ 1:682
ffiffiffiffiffiffiffi
jmt

p
ð6Þ

The maximum Rayleigh number at the onset of insta-

bility and subsequent convection may be expressed in

terms of critical time tc as:

Ramax ¼
0:6634Kegatcq0

kmm
ð7Þ

or in the conventional form.

Ramax ¼
KegaDTs 0:587

ffiffiffiffiffiffiffiffiffi
jmtc

pð Þ
jmm

ð8Þ

The critical time at the onset of convection can be esti-

mated with Ramax ¼ 27:1 as follows:

tc ¼ 2131
m

ffiffiffiffiffiffi
jm

p

KegaDTs

� �2

or
40:9kmm
Kegaq0

ð9Þ

since DTs can be substituted by Eq. (2).

The wavelength of the 3D convective plumes with a

shape of the roll and ~aac ¼ 2:3 can be predicted as:

kc ¼
2pzmax

~aac
¼ 4:59

ffiffiffiffiffiffiffiffiffi
jmtc

p
ð10Þ

The wavelength of hemispherical plumes can be pre-

dicted from [5]:

kc ¼
7:66zmax

~aac
¼ 5:60

ffiffiffiffiffiffiffiffiffi
jmtc

p
ð11Þ

The difference of sizes between the two shapes is 20%

and may not be easy to distinguish in an experiment as
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the plumes evolve from the thermal boundary layer. The

plume will initially form a narrow filament and will

reach a critical size of 5:6
ffiffiffiffiffiffiffiffiffi
jmtc

p
before detaching from

the thermal boundary layer.

3.2. Fixed surface temperature boundary condition

When the surface of a porous medium saturated with

fluid is heated (or cooled) by a step change in tempera-

ture instantaneously to a FST Ts, the temperature profile

in the bulk fluid of temperature T0 initially is predicted

by Carslaw and Jaeger [26] as:

T � Tsð Þ
T0 � Tsð Þ ¼ erf

z
2

ffiffiffiffiffiffiffi
jmt

p
� �

ð12Þ

The temperature gradient can be found by differentia-

ting Eq. (12)

dT
dz

� �
t

¼ � T0 � Tsð Þffiffiffiffiffiffiffiffiffiffi
pjmt

p e�
z2

4jm t ð13Þ

The transient Rayleigh number as defined in Eq. (1)

becomes

Ra ¼ Kegaz2

jmm
T0 � Tsð Þffiffiffiffiffiffiffiffiffiffi

pjmt
p e�

z2
4jm t ð14Þ

The maximum transient Rayleigh number at any instant

can be found by differentiation of Eq. (14) as follows:

o

oz
Ra

� �
t

¼ Kega T0 � Tsð Þ
jmm

ffiffiffiffiffiffiffiffiffiffi
pjmt

p e�
z2

4jm t

�
� z
2jmt

�
¼ 0 ð15Þ

which gives the position of the maximum value of

transient Ra as

zmax ¼ 2
ffiffiffiffiffiffiffi
jmt

p
ð16Þ

The maximum Rayleigh number at the onset of con-

vection may be expressed in terms of critical time tc as:

Ramax ¼
0:83Kega T0 � Tsð Þ

m

ffiffiffiffiffiffi
tc
jm

r
ð17Þ

or in the conventional form with DTc ¼ ðT0 � TsÞ.

Ramax ¼
KegaDTc 0:83

ffiffiffiffiffiffiffiffiffi
jmtc

pð Þ
jmm

ð18Þ

For a porous medium that is bounded by two solid

surfaces, Ramax ¼
ffiffiffiffiffiffiffi
4p2

p
, the critical time at the onset of

convection can thus be estimated as follows:

tc ¼ 2262
m

ffiffiffiffiffiffi
jm

p

KegaDTc

� �2

ð19Þ

The critical wavelength for a convective cell with a shape

of roll and ~aac ¼ p can be predicted as:

kc ¼
2pzmax

~aac
¼ 4

ffiffiffiffiffiffiffiffiffi
jmtc

p
ð20Þ

when the shape of the plume is hemispherical, then the

critical wavelength can be predicted from:

kc ¼
7:66zmax

~aac
¼ 4:88

ffiffiffiffiffiffiffiffiffi
jmtc

p
ð21Þ

which is about 20% more than that for a roll.

4. Computational fluid dynamics simulations

A commercial CFD package, FLUENT, was used

for the 2D time-dependent simulations for a homo-

geneous isotropic porous layer saturated with water

under CHF or FST boundary condition and bounded by

two rigid impermeable boundaries. The vertical walls

were adiabatic. The top rigid surface was held at an

initial temperature, T0 ¼ 20 �C. At time t ¼ 0 s, the CHF

boundary condition is attained by suddenly heating the

bottom surface with a CHF, whereas the FST boundary

condition surface was suddenly heated and maintained

at a fixed temperature Ts.
FLUENT defined the porous media model with the

input of permeability, porosity and the thermal prop-

erties of the solid and the liquid. The physical properties

of the porous medium employed in this study were based

on those of glass beads and water as shown in Table 2.

The permeability of porous media made of various

sizes of glass beads were calculated from the Kozeny–

Carmen relation [27].

Ke ¼
d2

172:8

/3

1� /ð Þ2
ð22Þ

where d is the diameter of the glass beads and / the

porosity. Eq. (22) is similar to Ergun�s relation [16] ex-

cept that the coefficient of the denominator is 150 in-

stead of 172.8.

Table 2

Physical properties of porous media at 20 �C

Properties Glass

beads

Water Porous

medium

Porosity (3-mm

diameter beads)

– – 0.345

Permeability (m2) – – 4.99� 10�9

Density (kg/m3) 2500 971 2225

Thermal conduc-

tivity (W/(mK))

1.14 0.613 0.956

Specific heat ca-

pacity (J/(kgK))

750 4180 835

Thermal diffusiv-

ity, jm (m2/s)

7.05� 10�7 1.51� 10�7 3.16� 10�7
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4.1. Size of domain and computation cell

The choice of the domain and computation cell is

vital, as it will affect the natural development of the

temperature profile and the formation of the plume. For

the time-dependent simulation, the critical thermal

depth and wavelength predicted by Eqs. (6) and (10) can

be used to determine the computation domain and cell

size with the known critical time from Eq. (9).

The thickness and width of the porous layer is set at a

depth of H P 3zmax and a width of wP 2kc in these

simulation to approximate the semi-infinite fluid, so that

there is ample space for the thermal plume to penetrate

the bulk fluid unimpeded. In addition, the effect of as-

pect ratio has to be taken into account in determining

the cell size. A general rule of thumb to avoid excessive

ratio is w=H 6 5. Excessive aspect ratio can lead to sta-

bility problem, convergence difficulties and propagation

of numerical errors. The spacing between a wall and the

adjacent grid line can reduce the accuracy of the com-

puted sheer stress and heat transfer coefficient at the

wall. The guidelines for the choice of the wall grid

spacing in laminar flows was derived based on the an-

alytical solution for fully-developed laminar flow plates

separated by a height H as Dn=H < 0:05, where Dn is the

size of computational cells.

5. Results of simulation for CHF and discussion

The results of simulations will be used to verify the

theory set forth in Section 3, particularly the values of

transient Rayleigh number, critical times and critical

wavelengths. There exists no experimental data for the

verification of the theory.

5.1. The formation and development of the thermal plumes

The development of the thermal boundary layer until

the onset of instability and convection, and the forma-

tion of plumes induced by a CHF is similar to Elder�s
[28] observations as shown in Figs. 1–3. It can be

characterized by three distinct regimes, namely,

ii(i) a quasi-stable regime in which a thermal boundary

layer began to form and thickening but no fluid mo-

tion is observed. This is the conduction phase, Fig. 1.

i(ii) a regime of very slow flow in which the velocity of

the fluid started to accelerate in the localized unsta-

ble points. The thermal boundary layer became dis-

torted and marked the onset of instability and the

ensuing convection, Fig. 2.

(iii) the post-onset unstable regime in which the dis-

torted thermal boundary layer extended and

formed an array of growing plumes, Fig. 3. Occa-

sionally the growing plumes may coalesce with

neighboring plumes, which extended and detached

and the next cycle began again.

The shape of the plumes for the porous media is

finger-like, quite different from the hemispherical cap

observed for plumes in continuous fluid. The rapid co-

alescence of evolving plumes rendered the observation

and measurement of the plumes quite difficult.

5.2. Critical times and transient Rayleigh numbers

The onset of convection can be detected by the sud-

den increase in the fluid velocity and simultaneous

change in heat transfer coefficient. FLUENT only re-

corded the minimum and maximum velocities, and the

Fig. 1. Temperature contour of a porous medium of 3 mm glass beads saturated with water. CHF q0 ¼ 5000 W/m2 at t ¼ 50 s.
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maximum velocity may be used to determine the onset

of convection as shown in Fig. 4. It was found in the

simulations that the maximum magnitude of velocity

increased exponentially with time after the onset of in-

stability. The fluid flowed upward rapidly in thin fila-

ments and extended to form finger-like plumes. The

convection phase was thus characterized by the forma-

tion and detachment of plumes. The range of the ve-

locity at the onset of convection was found to be

between 10�5 and 10�4 m/s depending on the rate of

Fig. 2. The onset of instability in porous medium of 3 mm glass beads saturated with water. CHF q0 ¼ 5000 W/m2 at time 225 s.

Fig. 3. The formation of plumes in porous medium of 3 mm glass beads saturated with water. CHF bottom heating at q0 ¼ 5000 W/m2

at t ¼ 300 s.
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heating, although these microvelocities are only indica-

tive of probable movement of only the fluid and not the

glass beads. They are in the same order of magnitude of

velocities measured by Horton and Roger [8], who ob-

served the occurrence of convection through the wall of

the glass container by means of a microscope, which

tracked the movement of a layer of soluble dye in the

medium. The initial motion occurred abruptly at a slow

rate of about 1� 10�5 m/s, while the velocity of the

stationary liquid was less than 1� 10�7 m/s. Therefore

the maximum velocities calculated by the simulations

are quite realistic.

The critical times are predicted by Eq. (9) with

properties of the mean temperature of that of the heated

surface and that of the bulk fluid. They are found to be

in good agreement with those summarized in Table 3.

Better predictions are obtained at small heat fluxes

or small temperature differences, for example at 180

W/m2 K for 15 mm diameter beads. The relatively bigger

interstitial spaces between large spherical particles also

allows more fluid to be present and respond more

readily to the temperature disturbance. This is expected

as the change of physical properties of the fluid at small

change of temperature is not significant, while the effect

of buoyancy is sufficiently discernable. The low critical

Ra of CHF boundary predicts relatively short tc com-

pared to that of the FST boundary condition, this is the

key feature of onset of instability at an insulating in-

terface. The short critical time of CHF heating will

generate more plumes per unit area since k is propor-

tional to the
ffiffiffi
tc

p
.

The critical transient Rayleigh numbers are calcu-

lated from the known heat fluxes and critical times ob-

served in the simulations, as are shown in Table 4. The

transient Rayleigh numbers are found to be independent

of the critical times, and therefore also independent of

the heat fluxes, as shown in Fig. 5. Thus the onset of

instability and convection is a localized process confined

within the thin thermal boundary layer. The average

maximum transient Rayleigh number based on jm and

Eq. (7) is 29.60, which is close to the theoretical value of

27.1 predicted by Ribando and Torrance [12], with a

difference of only 10%. Indeed the closest value of 27.8

was obtained with the lowest DTc of 3.8 �C for the 15-

mm beads. The maximum transient Rayleigh number

based on Eqs. (7) and (8) are as expected of small dif-

ference. However, the average Rac based on j� is 37.59,

which is 39% higher than the theoretical value of 27.1. It

is clear from our explanation in Section 2 that jm yields

a more accurate prediction of Ra than those predicted by

j�. This study also shows that transient convection in-

duced by the unsteady-state heat conduction provides a

better prediction of the critical Rayleigh number because

the correct temperature profile for the boundary condi-

tion and the corresponding definition of Ramust be used

for the prediction, i.e. for Bi ¼ 0.
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Fig. 4. Maximum velocities of water from various simulations for bottom heating with CHF boundary condition.

Table 3

Critical times from simulations and prediction for bottom

heating of CHF boundary condition

Beads di-

ameter

(mm)

Heat flux

(W/m2)

DTc
(�C)

Critical times (s)

Simulation Prediction

based on jm

3 5000 58.1 225 196

3500 49.4 340 310

6 2500 25.9 185 170

3000 28.3 150 136

9 1200 14.2 240 216

2000 17.4 130 115

15 500 5.1 180 237

180 3.8 720 703
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5.3. Critical wavelengths

The critical wavelengths or the sizes of the plumes

were obtained by measuring the distance between two

peaks of the plumes in simulations. They were found to

agree fairly well with the prediction of Eqs. (10) and (11)

as shown in Fig. 6. Strictly, the prediction of the sizes of

2D rolls can only be used to compare with the sizes of

Table 4

Critical Rayleigh numbers from simulations for bottom heating of CHF boundary condition

Beads diameter (mm) Heat flux (W/m2) DTc (�C) Critical Rayleigh number

Rac Eq. (7) Rac Eq. (8) Raca Eq. (8)

3 5000 58.1 34.38 35.27 44.08

3500 49.4 30.72 31.11 38.90

6 2500 25.9 29.52 29.69 37.16

3000 28.3 31.32 31.87 39.88

9 1200 14.2 31.98 32.21 40.33

2000 17.4 30.59 30.79 38.55

15 500 5.1 20.55 20.58 25.78

180 3.8 27.75 28.75 36.02

Average 29.60 30.04 37.59

aRayleigh number using thermal diffusivity j� ¼ km=ðqcpÞf .
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Fig. 5. Transient Rayleigh numbers from simulations for various porous media.
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2866 K.-K. Tan et al. / International Journal of Heat and Mass Transfer 46 (2003) 2857–2873



plumes from 2D CFD simulations in this study. Tan�s
CFD [29] simulations with 2D and 3D models showed

that the plumes in 3D simulations are more realistic

compared to those observed in experiments. It is ex-

pected that 3D simulations will show that the actual 3D

plumes will agree better with the prediction for hemi-

spherical plumes. Hence 3D simulations should be

conducted to study the development of the plume

structure in porous media as both type of convective cell

had been reported by Horne [30], Straus and Schubert

[31], Chen and Chen [20], Lister [32] in their laboratory

and numerical studies respectively.

5.4. Heat transfer and Nusselt number

The transient heat transfer coefficient from the sim-

ulation is found to increase suddenly at the onset of

convection after an initial decrease in the conduction

phase, Fig. 7. The critical time of about 200 s for the

simulation of 6 mm beads has been predicted accurately

by Eq. (9). Interestingly, the heat transfer coefficient for

the conduction phase in the simulation lies between

those predicted by k� and km. The temperature profiles

and heat flows are very accurately simulated by CFD.

The gap may be narrowed by using the physical pro-

perties at each temperature that was altered by the on-

going unsteady-state heat conduction.

The transient Nusselt number is calculated by di-

viding the heat flux obtained from simulation by the

heat flux by theoretical conduction [26], i.e. Nu ¼ q00s =q
00
c ,

where q00s ¼ hsDTc from simulation and q00c ¼ kmDTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=4jmt

p
c
, i.e. hc ¼ km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð4kmtcÞ

p
. The maximum

transient Nusselt number is found to increase with the

rate of heating, Table 5. The average value of Nusselt

number calculated using jm is about 3.41, which is close

to the theoretical value of 3 for steady-state convection

calculated by Busse and Joseph [33] for Ra ¼ Rac.
Generally Nusselt numbers based on jm are 25% more

than those calculated using j�, Fig. 8. However, we note

that the actual Nu will be appreciably higher than those

of the present 2D model. Indeed Tan�s [29] 3D time-

dependent simulation for liquids shows that Nu for 3D

simulations may be about 30% higher than those of 2D.

This may be due to higher surface area of a 3D plume

than that of a 2D roll. The average Nusselt for the whole

cycle is roughly 2.
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Fig. 7. Heat transfer coefficient at various times for bottom-heating, q0 ¼ 2500 W/m2 at tc ¼ 185 s for 6-mm glass beads.

Table 5

Maximum Nusselt number from simulations for bottom-heating of CHF boundary condition

Run no. Beads size (mm) Heat flux, q0 (W/m2) Domain size (cm) Boundary condition CHF

Nua Nub

3 6 2500 3� 4 3.30 2.60

4 6 3000 3� 4 3.75 3.00

6 9 2000 4� 5 3.05 2.43

7 15 500 3� 4 3.55 2.85

Average 3.41 2.72

aNusselt number calculated using jm.
bNusselt number using j�.
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6. Results of simulation for FST and discussion

6.1. Critical transient Rayleigh numbers and critical times

The critical transient Rayleigh numbers were calcu-

lated from properties of the mean temperature of the

porous media and the critical times from the simula-

tions. The average maximum transient Rayleigh num-

bers was found to be 30.9 and 38.7 based on jm and j�

respectively from Eq. (18). The one based on j� is the

correct value as it is close to the theoretical value of 39.5

predicted by Lapwood [9]. However the properties based

on j� is unrealistic as it does not take account of the

contribution from those of the solids, and it tends to

inflate the value of the Rayleigh number. It is important

to note that transient convection originated in the

thermal boundary layer in deep fluids is restrained by a

upper boundary that is provided by a laminar shear

layer, which is not a free surface characterized by

du=dy ¼ 0. Therefore, the critical Rayleigh number will

lie between that of a upper free and upper solid surface,

that is between 25.0 and 39.5 as shown in Table 6, the

value is 32.3. The simulated average transient Rayleigh

number of 30.9 based on jm is thus very close to the

theoretical value of 32.3.

The simulated critical times are found to be in good

agreement with those predicted by Eq. (19) with a crit-

ical Rayleigh number of 32.3. Indeed, the penetration

depth, zp ¼ 2
ffiffiffiffiffi
jt

p
, for 40 s, 9.1 mm in a porous medium,

smaller than the beads diameter (15 mm). The effect of

lateral heat transfer may not be as in cases of small

beads (Figs. 9–12).
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Fig. 8. Nusselt number for bottom-heating of CHF, q0 ¼ 2500 W/m2 for 6-mm glass beads.

Table 6

Critical times and transient Rayleigh numbers from simulations

Beads diameter (mm) DTs (�C) Critical times (s) Critical Rayleigh number

Simulated Predicted Raca Racb

3 45 225 253 30.46 38.09

30 900 1000 30.63 38.33

6 15 450 550 29.20 36.56

20 180 219 29.27 36.65

9 30 15 12 35.59 44.53

20 40 42 31.14 38.98

15 5 180 220 28.53 35.73

10 40 39.5 32.38 40.55

Average 30.90 38.68

aRayleigh number is calculated by using thermal diffusivity j#
m ¼ km=½/ðqcpÞf þ ð1� /ÞðqcpÞs
.

bRayleigh number by j� ¼ km=ðqcpÞf .
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6.2. Critical wavelengths

The critical wavelengths or sizes of the plumes were

found to agree fairly well with the 2D prediction of Eqs.

(20) and (21) as shown in Fig. 13. It is expected that 3D

plumes will agree better with the prediction for hemi-

spherical plumes.

6.3. Heat transfer and Nusselt number

The heat flux from simulation is seen to increase

abruptly and rapidly after the onset of convection at about

50 s for 15-mm beads, Fig. 14. The initial conduction

phase has been simulated very well up to the point of onset

of instability at 40 s, which has been predicted by Eq. (19).

Fig. 9. Temperature contour for 3 mm glass beads saturated with water. FST bottom heating at DTs ¼ 45 �C at t ¼ 100 s.

Fig. 10. The onset of instability and convection for 3 mm glass beads saturated with water. FST bottom heating at DTs ¼ 45 �C at

tc ¼ 225 s.
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The Nusselt number defined as the ratio of the actual

heat flux by convection to the heat flux by theoretical

heat conduction is equal to 1 before the onset of con-

vection. The transient Nusselt number calculated by

dividing the simulated heat flux obtained by the heat flux

of theoretical heat conduction at each instant (24), i.e.

Nu ¼ q00s =q
00
c , is found to increase rapidly after the onset

of convection until a maximum value of about 3.5, Fig.

15. The average value of 3.46 is a good estimate of the

actual 3D heat transfer process (27). The transient

Nusselt numbers calculated using jm are about 25%

more than those based on j� (Table 7). The development

of the thermal boundary layer until the onset of con-

vection induced by the FST boundary condition is

similar to that of the CHF boundary as shown in Figs.

9–11.

7. Conclusions

It was found that most bottom-heating experiments

are characterized by an insulating CHF boundary con-

dition, hence the Biot number of the bottom interface

should be zero, and its corresponding critical Rayleigh

Fig. 11. Formation of finger-like plumes for 3 mm glass beads saturated with water. FST bottom heating at DTs ¼ 45 �C at t ¼ 300 s.
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number should be 27.1, instead of 39.5 assumed for a

conducting boundary.

The onset of convection induced by unsteady-state

heat conduction in porous media under CHF boundary

condition has been successfully simulated using FLU-

ENT. The formation and development of the thermal

plume can be divided into three regimes, namely the

conduction regime, the onset of instability or convection
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and the post-convection regime. The simulated critical

transient Rayleigh number based on jm is close to the

theoretical value of 27.1. The critical times can be pre-

dicted accurately with our theory and the predictions of

critical wavelengths were fair.

The maximum transient Nusselt number based on jm

is in the range of 3.3–3.8.

The onset of convection in porous media induced by

unsteady state heat conduction for FST boundary con-

dition has been successfully simulated using a CFD

package. The simulated critical transient Rayleigh

number has been found to be in good agreement with

the theoretical value of 32.3 from LSA. The critical

times for the onset of instability and convection have

been predicted accurately.

The maximum transient Nusselt numbers based on

j# from simulations was in the range of 3.1 to 4.15, with

an average of 3.46.
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